
www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1705-1709 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

Visual Mobile AppInventor for Mobile

End-Users

#1

Kalyani K. Devnikar,
#2

Dr. S.B. Sonkamble

1devnikarkalyani15@gmail.com

2sonkamblesulochana@gmail.com

#1

Department of Computer Engineering,
#2

Prof. Department of Computer Engineering,

JSPM’s Rajarshi Shahu School of Engineering & Research, Narhe,

Pune, Maharashtra, India.

ABSTRACT

ARTICLE INFO

Mobile phone applications are becoming more and more popular. As the

technology advances, services like camera, accelerometers, compass, GPS, etc.

are provided by the mobile phones. However, the more smart phones become

smarter, the more the design of complex applications covering the various user

needs becomes a complicated task. To support an End-User in the development

of mobile applications we present a visual approach to enable End-Users to

compose visually their own applications directly on their mobile phone. The

methodology enables the end-user to develop applications and/or compose

services on the smart phone, so making the way towards new scenarios where

smart phones replace and overtake the Personal Computer, given their native

possibility of wide connectivity, when augmented by features for interaction with

remote systems and sensors. Moreover, the results of a preliminary usability

study revealed a good satisfaction degree and the effectiveness and efficacy of

the MicroApp visual approach.

Keywords: Visual languages; Service Composition; Mobile End-User

Development; Mobile Applications

Article History

Received: 28
th

 June 2016

Received in revised form :

28
th

 June 2016

Accepted: 30
th

 June 2016

Published online :

1
st
 July 2016

I. INTRODUCTION

The term visual computing is concerned with the

images and 3D models, i.e. computer graphics, image

processing, visualization etc. In this paper, we present a

visual approach to enable End-Users to compose visually

their own applications directly on their mobile phone. The

definition of an approach supporting an End-User in the

development of mobile applications is a hard task because

of the characteristics and the limitations of mobile device

interfaces. The more smart phones become smarter, the

more the design of complex applications covering the

various user needs becomes a not easy task. The number

of available applications for smart phones is rapidly

growing, together with the number of users interested in

top-range mobile devices. An appropriate handling of

mobile services allows the user to define by himself more

complex applications meeting different needs. The

composition of these applications can be visually modeled

through graphical symbols, associated to a particular

application behavior and to a specific user interface. By

opportunely connecting these graphical symbols, the user

can describe complex behaviors Recent advances in

mobile technology, mobile Networks and mobile

computing offer new functionalities and applications for

software systems on mobile devices. The demand for

mobile applications comes from a wide range of domains.

New services and innovative interaction modalities are

continuously proposed, including gesture detection,

device movement and context-based control. Smart

phones should allow the user to combine services across

multiple instruments to get smarter applications. To this

aim, we propose a touchable interface and an ad-hoc

visual language, enabling the user to compose simple

focused applications, named MicroApps. The MicroApp

Generator tool improves the effectiveness in terms of time

and editing errors with respect to the use of MIT App

Inventor. This paper is structured as follows. Related

work is discussed in Section II and Section III describes

system in detail. Section IV discusses designing of a

system and section V gives testing method and section VI

is summary and conclusion.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1705-1709 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 2

 II. RELATED WORKS

This application uses a visual programming language

supporting all the programming constructs and a server to

store projects and generate .apk files. However, there are

stand-alone versions that run entirely on the PC. Cabana

is a Web-based application supporting the development of

multiple mobile platforms. Programming is based on a

wiring diagram supplemented by the use of JavaScript. It

is addressed to beginner computer science students.

a) Jigsaw Approach

Danado and Patern`o [1][2] adopt a jigsaw approach

to compose pervasive/Web service. The tool Puzzle needs

the support of an external server to manage external

objects and the application repository. It also provides an

authoring tool for designing the User Interface, an HTML

viewer and native modules to exploit device

functionalities. Puzzle does not support static parameter

definition, thus, it does not exploit the advantage of

having a predefined application, with some information

bounded at design time. Their approach gets the list of

applications from an external Application Repository,

without contingency management.

b) Microsoft TouchDevelop

Microsoft TouchDevelop [3] is a programming

environment running on smart phones. The user writes

scripts by tapping on the screen. It has built-in primitives

which make it easy to access the sensor data available on

a mobile device. It supports the combinations of phone

sensor data (e.g., location) and the cloud (via services,

storage, computing, and social networks). Differently

from MicroApp Generator, the language is not graphical:

it uses variables and assignment statements. The smart

phone needs to be connected to the TouchDevelop server

in order to generate an app .

c) Microservices

In [4] a mobile tool has been proposed to compose

Microservices. They can be created considering two user

expertise levels: beginner, enabling template based

development of a Microservice, and advanced, based on

an XML-based language. Experienced users may use a

visual editor for editing the XM describing

Microservices’ profile, content, logic, and presentation[5].

d) Husky Tool

The HUSKY tool [6] enables the PC-users to compose the

logic of a PC-application by spatially arranging the

component services within spreadsheet cells, following

the idea presented in[7]. The execution proceeds on the

spreadsheet from left to right and from top to bottom. A

set of adjacent cells makes a sequence of events. The

information regarding the flow of data among cells is not

graphically represented.

e) Mashup Tool

Marmite [8] is an end-user mashup composition tool. The

system runs on the PC. It offers a set of operators such as

Search, Extract and Filter by, to extract and process data

from Web pages and Web services. A data-flow approach

is adopted to chain operators. The flow of data is

displayed in a table, adopting a spreadsheet view.

 III VISUAL MOBILE APPROACH

 The proposed approach helps the users to manage

the complexity of their activities performed with the

mobile device by composing simple applications. The

users do not concentrate in managing the dataflow and in

the designing of the user interface, but only on the

sequence of the actions needed to model the required

MicroApp.

 In this proposed approach, we present a

MicroApp Generator Architecture which gives us the

basic idea of a structure of a system.

Microapp Generator Architecture:

The system architecture which introduce framework of

MicroApp Generator.

MicroApp is registered in the action list launched when

the selected activation event happens. Before executing a

MicroApp, the activity Context Detection checks the user

context. Then, the activity Contingency Management

verifies

Fig 1: MicroApp Generator Architecture

the availability of the involved services and tries to

replace unavailable services.

 In this way, the application is able to manage

unpredictable availability of the involved services, i.e.,

faults or network connectivity problems. When all the

required services are available, this activity provides as

output a Service Graph, that represents the MicroApp

design instantiated with the available services. The

Execution activity linearizes the graph through a

topological sort and starts the execution. The Execution

activity periodically verifies if some context changes

occur.

 MicroApp Enactment. Before executing a MicroApp,

the activity Context Detection checks the user context.

Then, the activity Contingency Management verifies the

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1705-1709 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 3

availability of the involved services and tries to replace

unavailable services.

 During the MicroApp Modeling activity the user can

try his MicroApp at any time, by enacting it. In this way

the development process is incremental and allows

experimentation and testing of partially complete

applications. This feature lets end-user skills grow

gradually and provides immediate satisfaction.

Visual Language:

Visual programming language (VPL) is any

programming language that lets users create programs by

manipulating program elements graphically rather than by

specifying them textually. A VPL allows programming

with visual expressions, spatial arrangements of text and

graphic symbols, used either as elements of syntax or

secondary notation. For example, many VPLs (known as

dataflow or diagrammatic programming) are based on the

idea of "boxes and arrows", where boxes or other screen

objects are treated as entities, connected by arrows, lines

or arcs which represent relations.

 An ad-hoc developed mobile Visual Editor,

designed considering the limited size of the device screen,

supports the user in the modeling of the behavior of a

MicroApp by composing its application logic.

 The Visual Editor assists the selection of an action

by highlighting the action icons whose input is compatible

with the inputs/outputs of the blocks already positioned.

Once selected the action, the user clicks on a specific

column of the Composition Area to add the action. The

editor still assists the user disabling the columns that are

not compatible with the action to be inserted.

Mathematical Model:

In this section, mathematical model is represented in the

form of set theory.

Let us consider a set S

Where, S= {U, R, SER, D,I,Ser,C}

 Here, S: System which includes:

 U: Set of Users Where U= {U1, U2, U3 …, Un}

 SER: Server. R: Set of Request.

 Where R= {R1, R2, R3……., Rn}

 D: Database. N: Number of Cluster. (i.e. 2)

 I:- Input From Users

 Ser :- Services From the User

C:- Connection that services to the User Input

 Let Us F final System

 F=(S,O)

 S:- System

 O:- Output

 O= { (I U Ser) * (R U D) / C }

 IV. DESIGNING A APPINVENTOR

In this section we present a designing of a AppInventor.

Fig. 2 designing steps of “send to editor”

Let us start by showing a sample application developed

using AppInventor. Consider the following scenario:

Marc is a reporter of the newspaper Daily News in a war

zone. Repeatedly, he sends to his editor by email

encrypted pictures labelled by the name of the place

where each picture has been taken.

 The steps Marc performs to design the application

”Send to the Editor” are depicted in Fig. 2, where services

are represented by rounded rectangles and are connected

through bullets which correspond to the service

input/output parameters.

 Services are classified by type of action or device

sensor (e.g., Camera, Send, Facebook, Position) in the

service catalog. To compose the application Marc

performs the following actions: to take a picture, he

selects the folder Camera, which collects all the services

related to the device camera (Camera.Take,

Camera.Preview, Camera.Save). By a first touch, he

selects the service Camera.Take and, by a second touch,

puts it in the first column (Fig. 2(a)). As he wants to see a

preview of the picture before deciding to send it to his

editor, he selects the service Camera.Preview.

 The output bullet of Camera.Take is compatible

with the input bullet of Camera.Preview since both have

the same color (pink), denoting the image data type. Then,

to encrypt the picture, he first discovers the service

Encrypt available on the Web, and then puts it in the first

column, since the output bullet of Camera.Preview is

compatible with the generic input (black) of the selected

service.

 The editor’s contact is selected by adding the

service Contact.Static in the first available column on the

right as shown in Fig. 2(b). Marc also has to send the

picture location information. Thus, as shown in Fig. 2(c),

he selects the service Location, which detects Marc’s

position (by means of the GPS of the smart phone), and

puts this service in the third column.

Next, he connects this service to the service Maps, which

determines the name of the user location and produces a

map of his position.

With reference to Fig. 2(d), the service

Mail.Send needs to collect the recipient email address, the

picture and the location information. First Marc drags and

drops the service

Mail.Send in the first empty space of the first column

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1705-1709 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 4

attaching it to Encrypt. Successively he touches the

services Contact.Select and Maps to associate their output

parameters to the inputs of the service Mail.Send.

Moreover, possible coupling ambiguities are solved by

prompting a popup menu to the user.

 For example, Mail.Send has two parameters of type

text (i.e., body and subject) both compatible with the

location information outputted by Maps: from a popup

menu, the user chooses to attach the location information

to the body parameter. If there is an empty space between

two services to be connected, the service icon is

automatically lengthened, as in the case of

Contacts.Select in the second column. Marc selects the

editor’s contact by long pressing on the service

Contact.Static. A contact specified at design time (static)

is set for all the successive uses of the application. He can

specify more than one contact and the system will manage

the collection of contacts in a transparent way. Similarly,

Marc sets the password of the encryption algorithm for

the service Encrypt at design time. In coupling parameters,

the editor may automatically permute the input

parameters in order to connect them correctly.

V. TESTING AND DEPLOYING A APPINVENTOR

Since we are using MicroApp Architecture for our

proposed system, entire working of the newly developed

application will completely follow the MicroApp

execution procedure.

 The data-flow of a MicroApp is represented by a

directed acyclic graph since the MicroApp design does

not use loops. Each service has a set of inputs generated

by other services and, in turn, it provides inputs for other

services. The service execution plan is automatically

generated by a topological sort of the data-flow graph.

The MicroApp Engine loads the XML description and

translates it into a linear execution sequence by

instantiating the service objects and running the process.

Fig. 3 The directed acyclic graph of a MicroApp (a) and

its linearized execution plan (b).

As an example, Fig. 3(a) shows the directed acyclic graph.

Figure 3(b) shows the linearized execution plan of the

application. The solid arrows represent the data-flow,

whilst the dotted lines describe the control flow. The pre-

condition defined on the service AirConditioner is

implemented as a decision node on the control flow. If the

precondition is satisfied the service AirConditioner is

executed, otherwise the control passes to the service Text

Static. At the end of the modeling activity, the user selects

the Deploy command to install the AppInventor on his

device.

VI. GUI AUTOMATIC GENERATION

AppInventor involves the user in the composition of the

application logic. As this application needs the

composition of the multiple services provided by the

mobile phone it includes the modeling of the GUI which

involves the operations like pull-down menus, buttons,

scrolling, iconic images etc. The composition of the user

interface is not an easy task for user, so we come up with

the solution as following: for the services provided by

mobile phone, the GUI is generated using an XML

description provided by the AppInventor; for Web

services, it is automatically generated starting from the

WSDL.

 VII. ASSESSMENT

In AppInventor we have provided the platform to the end

user to create his own application. To evaluate the

usability of AppInventor we have studied some

implementation(Related Work) regarding this application

which shows the improvement of GUI in an AppInventor

application. The evaluation proposed in this paper

concerns the use of mobile computing features of both

existing implementation corresponding to

AppInventor(MicroApp) and App Inventor related to the

development of applications executing Web services

integrated with native device features (like mobile

phones,tablet etc.), and exploiting the user context.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 4 Page 1705-1709 ISSN 2395-1621

© 2015, IERJ All Rights Reserved Page 5

 VIII. RESULTS

In this section, we have presented some snapshots of the

application.

Fig. A Fig. B

Fig. C Fig. D

Figure A shows the GUI provided to the end user using

which he can create his own application. We have

provided very simple approach that can be useful to any

user having no technological skills. Figure B shows the

service provided by the application like camera, database;

where we can select the required service. In Figure C and

Figure D execution of service camera is shown; where we

have used email as a service. This paper studies the

detailed implementation of AppInventor application. Also

we perform the analysis of the parameter time,

performance and user interface. The chart is shown below:

0

5

10

15

20

Performance

User Interface

Time

 Fig 4. Performance Analysis

As much as the time required to execute the application is

maximized it will affect the performance of the system. If

the system provides the improved and user friendly GUI,

it results into the efficient system which requires no

technological skills to create application.

IX. FINAL REMARKS

In this paper we presented a mobile application and

development process that support the user in the visual

composition of customized applications for mobile

devices. AppInventor which supports the generation of

pervasive mobile applications, directly on the smart phone.

AppInventor are graphically developed by composing

native device features with Web services, domotics and

sensor management services.

Future work will be devoted to enable the users to tweak

the GUI to match their needs and to port AppInventor on

other Mobile Operating Systems.

 REFERENCES

[1] J. Danado and F. Patern` o, “A Prototype for EUD in

Touchbased Mobile Devices,” in IEEE Symp. on Vis.

Languages and Human-Centric Computing (VL/HCC),

2012, pp. 83–86.

[2] “Puzzle: A Visual-Based Environment for End User

Development in Touch-based Mobile Phones,” in HCSE,

2012, pp. 199–216.

[3] N. Tillmann, M. Moskal, J. de Halleux, and M.

Fahndrich,“TouchDevelop: Programming Cloud-

connected Mobile Devices via Touchscreen,” in

SIGPLAN Symp. on New ideas, new paradigms, and

reflections on prog. and softw. (ONWARD). ACM, 2011,

pp. 49–60.

[4] J. Danado, M. Davies, P. Ricca, and A. Fensel, “An

Authoring Tool for User Generated Mobile Services,” in

Conf. on Future Internet, 2010, pp. 118–127.

[5] M. Davies, F. Carrez, D. Urdiales, A. Fensel, M.

Narganes,and J. Danado, “Defining User-generated

Services in a Semantically-enabled Mobile Platform,” in

Intl. Conf. on Inf. Integration and Web-based App. &

Services (iiWAS). ACM, 2010, pp. 333–340.

[6] D. Skrobo, HUSKY: A Spreadsheet for End-User

Service Composition. http://www.fer.unizg.hr/

download/repository/DanielSkrobo KvalifDrIspit

HUSKY.pdf, 2011.

[7] D. D. Hoang, H.-y. Paik, and B. Benatallah, “An

Analysis of Spreadsheet-based Services Mashup,” in

Australasian Conf. on Database Tech. (ADC), 2010, pp.

141–150.

[8] J. Wong and J. I. Hong, “Making Mashups with

Marmite:Towards End-user Programming for theWeb,” in

SIGCHI Conf. on Human factors in computing systems

(CHI). ACM, 2007, pp.1435–1444.

[9] R Ahmed, “Visual Languages: A New way of

Programming”, in Malaysian Journal of Computer

Science, 1999.

[10] Rita Francese, Michele Risi, Genoveffa Tortora,

senior Member, IEEE, and Maurizio Tucci, “Visual

Mobile Computing for Mobile End-Users,” in IEEE Trans.

On mobile computing, vol. -, no. -, APR 2015

